Copied to
clipboard

G = C42.62D6order 192 = 26·3

62nd non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.62D6, (C2xD4).45D6, (C2xC12).81D4, (C2xQ8).59D6, C12:2Q8:17C2, C4.4D4.5S3, C12.66(C4oD4), Q8:2Dic3:20C2, C42.S3:8C2, (C6xD4).61C22, (C6xQ8).53C22, C4.20(D4:2S3), C2.17(D4:D6), C6.118(C8:C22), (C2xC12).373C23, (C4xC12).104C22, D4:Dic3.12C2, C6.41(C4.4D4), C2.18(Q8.14D6), C2.8(C23.12D6), C6.119(C8.C22), C4:Dic3.150C22, C3:4(C42.28C22), (C2xC6).504(C2xD4), (C2xC4).60(C3:D4), (C2xC3:C8).120C22, (C3xC4.4D4).3C2, (C2xC4).473(C22xS3), C22.179(C2xC3:D4), SmallGroup(192,614)

Series: Derived Chief Lower central Upper central

C1C2xC12 — C42.62D6
C1C3C6C2xC6C2xC12C2xC3:C8C42.S3 — C42.62D6
C3C6C2xC12 — C42.62D6
C1C22C42C4.4D4

Generators and relations for C42.62D6
 G = < a,b,c,d | a4=b4=c6=1, d2=a2, ab=ba, cac-1=a-1b2, dad-1=a-1, cbc-1=dbd-1=b-1, dcd-1=a2bc-1 >

Subgroups: 272 in 100 conjugacy classes, 39 normal (27 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2xC4, C2xC4, D4, Q8, C23, Dic3, C12, C12, C2xC6, C2xC6, C42, C22:C4, C4:C4, C2xC8, C2xD4, C2xQ8, C2xQ8, C3:C8, Dic6, C2xDic3, C2xC12, C2xC12, C3xD4, C3xQ8, C22xC6, C8:C4, D4:C4, Q8:C4, C4.4D4, C4:Q8, C2xC3:C8, C4:Dic3, C4:Dic3, C4xC12, C3xC22:C4, C2xDic6, C6xD4, C6xQ8, C42.28C22, C42.S3, D4:Dic3, Q8:2Dic3, C12:2Q8, C3xC4.4D4, C42.62D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, C3:D4, C22xS3, C4.4D4, C8:C22, C8.C22, D4:2S3, C2xC3:D4, C42.28C22, C23.12D6, D4:D6, Q8.14D6, C42.62D6

Character table of C42.62D6

 class 12A2B2C2D34A4B4C4D4E4F4G6A6B6C6D6E8A8B8C8D12A12B12C12D12E12F12G12H
 size 111182224482424222881212121244444488
ρ1111111111111111111111111111111    trivial
ρ211111111111-1-111111-1-1-1-111111111    linear of order 2
ρ31111-1111-1-111-1111-1-1-111-1-1-1-1-11111    linear of order 2
ρ41111-1111-1-11-11111-1-11-1-11-1-1-1-11111    linear of order 2
ρ511111111-1-1-1-1111111-111-1-1-1-1-111-1-1    linear of order 2
ρ611111111-1-1-11-1111111-1-11-1-1-1-111-1-1    linear of order 2
ρ71111-111111-1-1-1111-1-11111111111-1-1    linear of order 2
ρ81111-111111-111111-1-1-1-1-1-1111111-1-1    linear of order 2
ρ92222-2-122-2-2200-1-1-11100001111-1-1-1-1    orthogonal lifted from D6
ρ1022222-122-2-2-200-1-1-1-1-100001111-1-111    orthogonal lifted from D6
ρ11222202-2-22-20002220000002-2-22-2-200    orthogonal lifted from D4
ρ122222-2-12222-200-1-1-1110000-1-1-1-1-1-111    orthogonal lifted from D6
ρ1322222-12222200-1-1-1-1-10000-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ14222202-2-2-22000222000000-222-2-2-200    orthogonal lifted from D4
ρ1522220-1-2-2-22000-1-1-1-3--300001-1-1111-3--3    complex lifted from C3:D4
ρ1622220-1-2-22-2000-1-1-1--3-30000-111-111-3--3    complex lifted from C3:D4
ρ1722220-1-2-22-2000-1-1-1-3--30000-111-111--3-3    complex lifted from C3:D4
ρ1822220-1-2-2-22000-1-1-1--3-300001-1-1111--3-3    complex lifted from C3:D4
ρ192-22-2022-2000002-2-20002i-2i000002-200    complex lifted from C4oD4
ρ202-22-202-22000002-2-200-2i002i0000-2200    complex lifted from C4oD4
ρ212-22-202-22000002-2-2002i00-2i0000-2200    complex lifted from C4oD4
ρ222-22-2022-2000002-2-2000-2i2i000002-200    complex lifted from C4oD4
ρ2344-4-40-2000000022-2000000023-2300000    orthogonal lifted from D4:D6
ρ2444-4-4040000000-4-4400000000000000    orthogonal lifted from C8:C22
ρ2544-4-40-2000000022-20000000-232300000    orthogonal lifted from D4:D6
ρ264-44-40-2-4400000-22200000000002-200    symplectic lifted from D4:2S3, Schur index 2
ρ274-4-44040000000-44-400000000000000    symplectic lifted from C8.C22, Schur index 2
ρ284-4-440-200000002-220000002300-230000    symplectic lifted from Q8.14D6, Schur index 2
ρ294-44-40-24-400000-2220000000000-2200    symplectic lifted from D4:2S3, Schur index 2
ρ304-4-440-200000002-22000000-2300230000    symplectic lifted from Q8.14D6, Schur index 2

Smallest permutation representation of C42.62D6
On 96 points
Generators in S96
(1 42 8 35)(2 40 9 33)(3 38 7 31)(4 32 11 39)(5 36 12 37)(6 34 10 41)(13 49 79 55)(14 69 80 63)(15 51 81 57)(16 71 82 65)(17 53 83 59)(18 67 84 61)(19 27 96 30)(20 47 91 44)(21 29 92 26)(22 43 93 46)(23 25 94 28)(24 45 95 48)(50 88 56 74)(52 90 58 76)(54 86 60 78)(62 73 68 87)(64 75 70 89)(66 77 72 85)
(1 93 4 96)(2 91 5 94)(3 95 6 92)(7 24 10 21)(8 22 11 19)(9 20 12 23)(13 16 87 90)(14 85 88 17)(15 18 89 86)(25 33 47 37)(26 38 48 34)(27 35 43 39)(28 40 44 36)(29 31 45 41)(30 42 46 32)(49 71 62 58)(50 59 63 72)(51 67 64 60)(52 55 65 68)(53 69 66 56)(54 57 61 70)(73 76 79 82)(74 83 80 77)(75 78 81 84)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 61 8 67)(2 63 9 69)(3 65 7 71)(4 54 11 60)(5 50 12 56)(6 52 10 58)(13 48 79 45)(14 40 80 33)(15 46 81 43)(16 38 82 31)(17 44 83 47)(18 42 84 35)(19 64 96 70)(20 53 91 59)(21 62 92 68)(22 51 93 57)(23 66 94 72)(24 49 95 55)(25 85 28 77)(26 73 29 87)(27 89 30 75)(32 78 39 86)(34 76 41 90)(36 74 37 88)

G:=sub<Sym(96)| (1,42,8,35)(2,40,9,33)(3,38,7,31)(4,32,11,39)(5,36,12,37)(6,34,10,41)(13,49,79,55)(14,69,80,63)(15,51,81,57)(16,71,82,65)(17,53,83,59)(18,67,84,61)(19,27,96,30)(20,47,91,44)(21,29,92,26)(22,43,93,46)(23,25,94,28)(24,45,95,48)(50,88,56,74)(52,90,58,76)(54,86,60,78)(62,73,68,87)(64,75,70,89)(66,77,72,85), (1,93,4,96)(2,91,5,94)(3,95,6,92)(7,24,10,21)(8,22,11,19)(9,20,12,23)(13,16,87,90)(14,85,88,17)(15,18,89,86)(25,33,47,37)(26,38,48,34)(27,35,43,39)(28,40,44,36)(29,31,45,41)(30,42,46,32)(49,71,62,58)(50,59,63,72)(51,67,64,60)(52,55,65,68)(53,69,66,56)(54,57,61,70)(73,76,79,82)(74,83,80,77)(75,78,81,84), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,61,8,67)(2,63,9,69)(3,65,7,71)(4,54,11,60)(5,50,12,56)(6,52,10,58)(13,48,79,45)(14,40,80,33)(15,46,81,43)(16,38,82,31)(17,44,83,47)(18,42,84,35)(19,64,96,70)(20,53,91,59)(21,62,92,68)(22,51,93,57)(23,66,94,72)(24,49,95,55)(25,85,28,77)(26,73,29,87)(27,89,30,75)(32,78,39,86)(34,76,41,90)(36,74,37,88)>;

G:=Group( (1,42,8,35)(2,40,9,33)(3,38,7,31)(4,32,11,39)(5,36,12,37)(6,34,10,41)(13,49,79,55)(14,69,80,63)(15,51,81,57)(16,71,82,65)(17,53,83,59)(18,67,84,61)(19,27,96,30)(20,47,91,44)(21,29,92,26)(22,43,93,46)(23,25,94,28)(24,45,95,48)(50,88,56,74)(52,90,58,76)(54,86,60,78)(62,73,68,87)(64,75,70,89)(66,77,72,85), (1,93,4,96)(2,91,5,94)(3,95,6,92)(7,24,10,21)(8,22,11,19)(9,20,12,23)(13,16,87,90)(14,85,88,17)(15,18,89,86)(25,33,47,37)(26,38,48,34)(27,35,43,39)(28,40,44,36)(29,31,45,41)(30,42,46,32)(49,71,62,58)(50,59,63,72)(51,67,64,60)(52,55,65,68)(53,69,66,56)(54,57,61,70)(73,76,79,82)(74,83,80,77)(75,78,81,84), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,61,8,67)(2,63,9,69)(3,65,7,71)(4,54,11,60)(5,50,12,56)(6,52,10,58)(13,48,79,45)(14,40,80,33)(15,46,81,43)(16,38,82,31)(17,44,83,47)(18,42,84,35)(19,64,96,70)(20,53,91,59)(21,62,92,68)(22,51,93,57)(23,66,94,72)(24,49,95,55)(25,85,28,77)(26,73,29,87)(27,89,30,75)(32,78,39,86)(34,76,41,90)(36,74,37,88) );

G=PermutationGroup([[(1,42,8,35),(2,40,9,33),(3,38,7,31),(4,32,11,39),(5,36,12,37),(6,34,10,41),(13,49,79,55),(14,69,80,63),(15,51,81,57),(16,71,82,65),(17,53,83,59),(18,67,84,61),(19,27,96,30),(20,47,91,44),(21,29,92,26),(22,43,93,46),(23,25,94,28),(24,45,95,48),(50,88,56,74),(52,90,58,76),(54,86,60,78),(62,73,68,87),(64,75,70,89),(66,77,72,85)], [(1,93,4,96),(2,91,5,94),(3,95,6,92),(7,24,10,21),(8,22,11,19),(9,20,12,23),(13,16,87,90),(14,85,88,17),(15,18,89,86),(25,33,47,37),(26,38,48,34),(27,35,43,39),(28,40,44,36),(29,31,45,41),(30,42,46,32),(49,71,62,58),(50,59,63,72),(51,67,64,60),(52,55,65,68),(53,69,66,56),(54,57,61,70),(73,76,79,82),(74,83,80,77),(75,78,81,84)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,61,8,67),(2,63,9,69),(3,65,7,71),(4,54,11,60),(5,50,12,56),(6,52,10,58),(13,48,79,45),(14,40,80,33),(15,46,81,43),(16,38,82,31),(17,44,83,47),(18,42,84,35),(19,64,96,70),(20,53,91,59),(21,62,92,68),(22,51,93,57),(23,66,94,72),(24,49,95,55),(25,85,28,77),(26,73,29,87),(27,89,30,75),(32,78,39,86),(34,76,41,90),(36,74,37,88)]])

Matrix representation of C42.62D6 in GL6(F73)

2130000
23520000
00006659
0000147
0071400
00596600
,
100000
010000
000010
000001
0072000
0007200
,
100000
59720000
00727200
001000
000011
0000720
,
17650000
18560000
00693693
007474
00693470
00746669

G:=sub<GL(6,GF(73))| [21,23,0,0,0,0,3,52,0,0,0,0,0,0,0,0,7,59,0,0,0,0,14,66,0,0,66,14,0,0,0,0,59,7,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,1,0,0,0,0,0,0,1,0,0],[1,59,0,0,0,0,0,72,0,0,0,0,0,0,72,1,0,0,0,0,72,0,0,0,0,0,0,0,1,72,0,0,0,0,1,0],[17,18,0,0,0,0,65,56,0,0,0,0,0,0,69,7,69,7,0,0,3,4,3,4,0,0,69,7,4,66,0,0,3,4,70,69] >;

C42.62D6 in GAP, Magma, Sage, TeX

C_4^2._{62}D_6
% in TeX

G:=Group("C4^2.62D6");
// GroupNames label

G:=SmallGroup(192,614);
// by ID

G=gap.SmallGroup(192,614);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,112,477,64,590,471,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=1,d^2=a^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=a^2*b*c^-1>;
// generators/relations

Export

Character table of C42.62D6 in TeX

׿
x
:
Z
F
o
wr
Q
<